Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

A410U10-1

III | IIII | IIIII | IIIII | IIII | I

TUESDAY, 5 OCTOBER 2021 – AFTERNOON

CHEMISTRY – A level component 1 Physical and Inorganic Chemistry

2 hours 30 minutes

		For Ex	aminer's us	e only
ADDITIONAL MATERIALS		Question	Maximum Mark	Mark Awarded
need a: • calculator;	Section A	1. to 8.	15	
 Data Booklet supplied by WJEC. 	Section B	9.	12	
INSTRUCTIONS TO CANDIDATES		10.	14	
Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use pencil for graphs and diagrams only.		11.	15	
Write your name, centre number and		12.	20	
candidate number in the spaces at the top of this page.		13.	17	
Section A Answer all questions. Section B Answer all questions.		14.	17	
Write your answers in the spaces provided in this booklet. If you run out of space, use the		15.	10	
additional page(s) at the back of the booklet,		Total	120	

Candidates are advised to allocate their time appropriately between **Section A (15 marks)** and **Section B (105 marks)**.

INFORMATION FOR CANDIDATES

correctly.

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 120.

taking care to number the question(s)

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q.13(c)(i) and Q.15(b).

	SECTION A		
	Answer all questions in the sp	aces provided.	
Give a reason why chlo	prine is used in the treatment of	f domestic water sup	oplies. [1]
Explain why graphite is	able to conduct electricity.		[1]
	acids are recorded using their ral acids are given below. Sta		
	Acid	p <i>K</i> a	
	methanoic acid	3.75	
	ethanoic acid	4.76	
	hydrofluoric acid	3.20	

A410U101 03

n the gas phase phosphorus(V) c	hloride dissociates according to t	the equation below	
PCl ₅ (g)	\Longrightarrow PCl ₃ (g) + Cl ₂ (g)		
A sample of pure PCI ₅ is allowed to s 240 kPa, with the partial pressur	dissociate in a sealed vessel. At e e of the PCI ₅ being 100 kPa. Find	equilibrium the total pres d the value of <i>K</i> _p .	ssure [3]
	К _р =	=	Pa
The rate of reaction between aqu studied at different concentrations Concentration of NaHCO ₃		e given in the table.	was
/moldm ⁻³	/moldm ⁻³	Relative rate	
1.0	1.0	1.00	
1.0	0.5	0.50	
0.5	1.0	0.50	
0.5	0.5	0.25	
(a) Suggest a method of measu	ring the rate of this reaction.		[1]
<i>(b)</i> Find the orders of reaction equation.	with respect to NaHCO ₃ and H	CI and hence write the	rate [2]
rate =			

4	
-	

•	Write an equation to show the reaction that represents the standard enthalpy of ethanol, $\Delta_{\rm f} H^{\theta}$ (C ₂ H ₅ OH). You should include state symbols.	-
	of ethanol, $\Delta_{\rm f} = (C_2 \Pi_5 O \Pi)$. Fou should include state symbols.	[2]
	A chemical reaction occurs at a temperature of 300 K with an activation energy. The frequency factor, A, is $1.27 \times 10^9 \text{ s}^{-1}$.	gy of 54 000 J mol ^{–1} .
	Write the Arrhenius equation and use it to calculate the value of the rate con	nstant. [2]
	Arrhenius equation	
	k =	s ⁻¹
	Oxygen difluoride, OF_2 , is a highly oxidising gas with a foul smell.	
	(a) Give a reason why the bond angle in OF_2 is less than 109° despite the	oxygen having four
	electron pairs in its outer shell.	[1]
	(<i>b</i>) Sulfur is able to form a range of fluorides including SF ₂ and SF ₆ but ov fluorides containing two fluorine atoms. Give a reason for this different effective of every and every	rence between the
	chemistry of oxygen and sulfur.	[1]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

A410U101 05

		SECTION B	Examine only
		Answer all questions in the spaces provided.	
9.	Caes	ium is a Group 1 element and it is the most reactive of all naturally occurring metals.	
	(a)	The reactivity of Group 1 elements increases down the group as the first ionisation energy decreases.	
		Explain why the first ionisation energy of Group 1 elements decreases down the group. [2]	
	(b)	Caesium is extracted from the mineral pollucite.	
		A sample of pollucite contains 24.16 % caesium by mass, with each formula unit containing one caesium ion. Find the relative formula mass of this sample of pollucite. [2]	
		<i>M</i> _r =	
	(C)	Caesium chloride has a different crystal structure from sodium chloride.	
		(i) Draw the crystal structure of caesium chloride. Label your diagram clearly. [1]	
		 (ii) Explain why caesium chloride has a different crystal structure from sodium chloride. [1] 	
	06	© WJEC CBAC Ltd. (A410U10-1)]

6

Examiner only

[1]

[2]

A410U101 07

(d) Caesium-137 was one of the main isotopes released during the Chernobyl nuclear accident in 1986. Another was iodine-131. Some data on these two radioisotopes is given in the table.

Isotope	Half-life	Radiation emitted	Level of radioactivity following the accident / Bq
caesium-137	30 years	β ⁻ , γ	1.8 × 10 ¹⁶
iodine-131	8 days	β ⁻ , γ	8.5 × 10 ¹⁶

1 Bq = decay of one nucleus per second

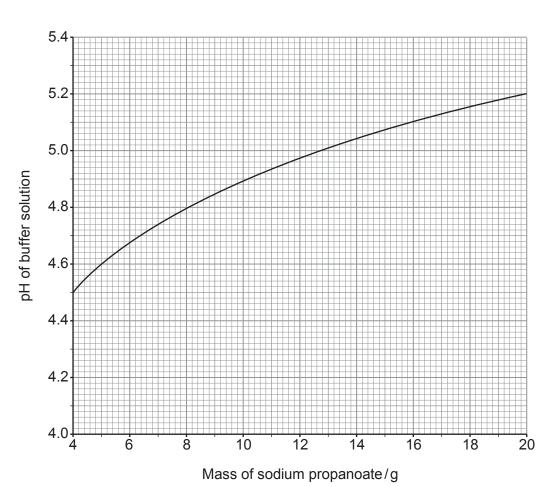
(i)	lodine-131 decays by emission of a β^-	particle. Identify the isotope formed.	[1]
	Element	Mass Number	

(ii) State what is meant by β^- radiation.

- (iii) Calculate the level of radioactivity due to iodine-131 after 32 days.
- (iv) Suggest which of the two isotopes was released in greater amounts during the accident. Use the data in the table to justify your answer. [2]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE


A410U101 09

emistry handbook suggests using a mixture of propanoic acid, CH ₃ CH ₂ COOH, a propanoate, CH ₃ CH ₂ COONa, as a buffer solution. tate what is meant by a buffer solution.	nd Examir only	101
tate what is meant by a buffer solution		
	[1]	
ive a use for a buffer.	[1]	
		A410U101
		ive a use for a buffer. [1]

(c) The handbook suggests using 100 cm³ of 1.00 mol dm⁻³ aqueous propanoic acid and dissolving an appropriate mass of sodium propanoate in the acid at 298 K to form a buffer.

The mass of sodium propanoate needed for different pH values is given in the chart below.

A410U101 11

(i)	Find the pH of the buffer when the concentration of the sodium propanoate is equal to the concentration of the propanoic acid. [4]	Examiner only
	pH =	
(ii)	Find the value of K_{a} for propanoic acid. [2]	
		A410U101
	K _a =	
(iii)	At a higher temperature a greater mass of sodium propanoate must be added to the propanoic acid to achieve the same pH.	
	Explain what information this provides about the effect of temperature on K_a and hence the energy change during the dissociation of propanoic acid. [3]	
•••••		
••••••		
		-

			Examiner
(d)		anoic acid reacts with calcium oxide to form calcium propanoate and water.	only
	(i)	Write an equation for this reaction. [1]]
	(ii)	Calculate the mass of calcium propanoate formed by addition of 1.20g of calcium oxide to excess propanoic acid.	n]
		Mass =	
			14

A410U101 13

11.	Copp	per ha	s two stable oxidation states in its compounds, +1 and +2.	Exal
	(a)	Give	the electronic structure of a copper atom.	[1]
	(b)		per(I) compounds are generally white solids. Explain why copper(I) compound coloured.	s are [1]
	(c)	Cop _l (i)	per(II) oxide reacts with a range of acids to produce salts. Copper(II) oxide reacts with concentrated hydrochloric acid to give a green sole	ution.
		(1)	Draw the structure of the copper-containing ion present in this solution.	[1]
		(ii)	Copper(II) oxide reacts with dilute sulfuric acid to give a solution containing aqua Cu^{2+} ions.	ieous
			Aqueous Cu ²⁺ ions are blue, but a white solid is formed when the solution is he to complete dryness. Explain why Cu ²⁺ ions lose their colour.	eated [2]
		·····		
		·····		

Sub	stance	Standard enthalpy change of formation / kJ mol ⁻¹	Standard entropy/JK ⁻¹ mol ⁻¹		
Сι	uCI(s)	-138	87		
CuCl ₂ (s)		-206 108			
С	Cu(s)	0	33	-	
С	l ₂ (g)	0	233		
•••••					
(ii)	State why zero.	y the standard enthalpy changes	of formation for copper and chlori	ne are	
(ii) 	zero.	eason why the standard entropy	of formation for copper and chlori	[1	

Examiner only Use the values in the table to show that the student is incorrect and that the (iv) disproportionation reaction will not occur at any temperature for the substances in their standard states. [4] _____ The data in the table suggests that copper should react with chlorine at room temperature, however heating is usually needed for efficient reaction. Suggest why (v) heating is beneficial. [1]

15

PMT

A410U101 15

	Standard electrode potential, <i>Ε</i> ^θ /V	
$H_3PO_3 + 2H^+ + 2e^- \rightleftharpoons H_3PO_2 + H_2O_2$	-0.50	
$Cu^{2+} + e^- \rightleftharpoons Cu^+$	+0.16	
$SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons SO_2 + 2H_2O$	+0.17	
$Cu^{2+} + 2e^- \rightleftharpoons Cu$	+0.33	
$VO^{2+} + 2H^+ + e^- \rightleftharpoons V^{3+} + H_2O$	+0.34	
Cu⁺ + e⁻ ≓ Cu	+0.52	
$H_2MoO_4 + 2H^+ + 2e^- \rightleftharpoons MoO_2 + 2H_2G$ Copper(I) compounds can be produced by reconstructed by reconstruction of the second s	duction of copper(II) compounds	s in solution. (s). [2]
Copper(I) compounds can be produced by rec	duction of copper(II) compounds	s in solution. (s). [2]
Copper(I) compounds can be produced by rec	duction of copper(II) compounds	s in solution. (s). [2]
Copper(I) compounds can be produced by rec	duction of copper(II) compounds	s in solution. (s). [2]
Copper(I) compounds can be produced by rec	duction of copper(II) compounds	s in solution. (s). [2]
Copper(I) compounds can be produced by rec	duction of copper(II) compounds	s in solution. (s). [2]
Copper(I) compounds can be produced by rec	duction of copper(II) compounds	s in solution. (s). [2]

BLANK PAGE

17

PLEASE DO NOT WRITE ON THIS PAGE

A410U101 17

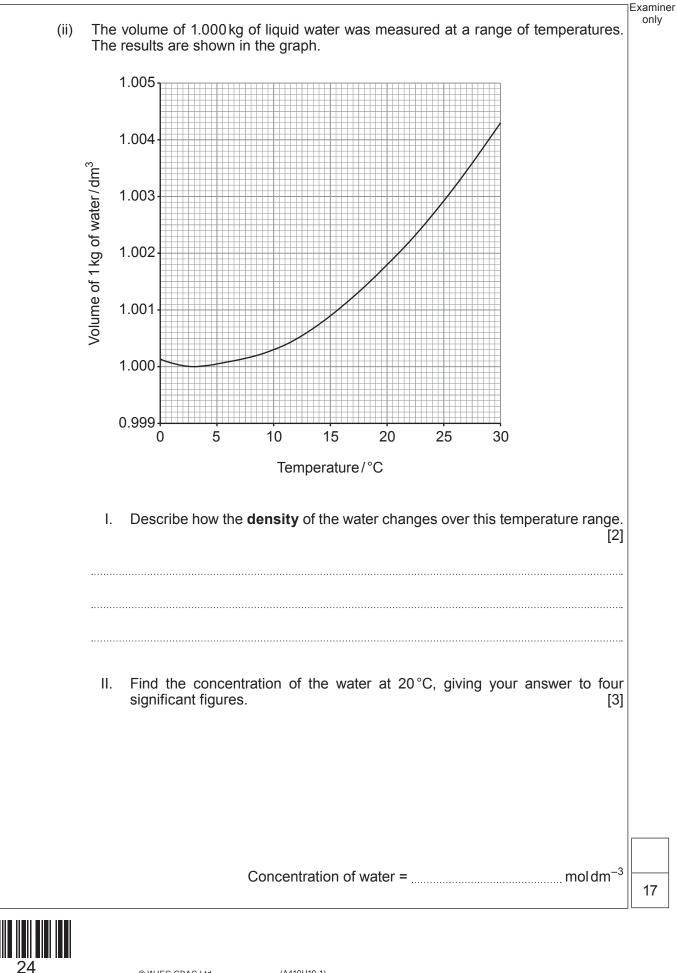
		many common acids and these can be classified as weak acids such as ethanoic				
acid,	or stro	ong acids such as nitric acid and sulfuric acid.				
(a)						
	(i)	In step 1 of the process, ammonia is oxidised by oxygen to give nitric oxide, NO, and water.				
	<u>.</u>	Write an equation for this step. [1]				
	(ii)	In the second step, nitric oxide is converted into nitrogen dioxide, NO_2 .				
		$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$ $\Delta H^{\theta} = -114 \text{ kJ mol}^{-1}$				
		The standard enthalpy change of formation of nitric oxide, NO, is $91 \text{kJ} \text{mol}^{-1}$.				
		Calculate the standard enthalpy change of formation of nitrogen dioxide, NO ₂ . [2]				
		$\Delta_{\rm f} H^{\Theta} = \dots kJ {\rm mol}^{-1}$				

19

(iii)	The final step is shown below.
	$3NO_2(g) + H_2O(I) \longrightarrow 2HNO_3(aq) + NO(g)$ $\Delta H^{\theta} = -117 \text{ kJ mol}^{-1}$
	I. Use oxidation states to show that this is a disproportionation reaction. [2
	 II. 1.85g of NO₂ was added to 120 cm³ of water at a temperature of 19.7 °C Calculate the final temperature of the water.
	°، Final temperature =°
	III. Find the pH of the solution formed in part II.
	pH = IV. Nitric oxide, NO, is produced as a side product in step 3. Suggest a way of
	IV. Nitric oxide, NO, is produced as a side product in step 3. Suggest a way of improving the process to avoid this NO being wasted.

				Examiner only
(b)	One method of making ethanoic acid is by the			
	$CH_3OH(I) + CO(g) \longrightarrow CH_3COOH(I)$)	$\Delta G^{\theta} = -88 \text{kJ} \text{mol}^{-1}$	
			$\Delta H^{\theta} = -137 \mathrm{kJ mol^{-1}}$	
	Calculate the standard entropy change for this	s reaction.		[3]
		A		1 . 1
		$\Delta S^{\circ} = \dots$	JK	"mol"
20	© WJEC CBAC Ltd (A410U10-1)			

(C)	Acide	s are neutralised by metal carbonates.	Examin only	er
(0)	(i)	Write the ionic equation for the reaction of a carbonate ion with acid.	[1]	
	(ii)	Equal volumes of $1.0 \text{mol}\text{dm}^{-3}$ solutions of HNO ₃ , CH ₃ COOH and H ₂ SO ₄ added to separate samples of 1g of powdered magnesium carbonate.	were	
		State and explain any differences in the rates observed for each reaction.	[3]	
	·····			
	(iii)	The experiment in part (ii) is repeated using barium carbonate in the place magnesium carbonate.	ce of	
		State and explain any differences in the observations for this experiment.	[1]	
	······			
			20	
21		© WJEC CBAC Ltd. (A410U10-1) Turn	over.	



(a)	Aluminium chloride exists as the dimer Al ₂ Cl ₆ . This includes both covalent and coordinate bonds.
	State what is meant by the term coordinate bond, indicating clearly how a coordinate bond differs from a covalent bond. [2]
(b)	Aluminium chloride dimers can break up in the gas phase to form AICl ₃ molecules.
	The mass spectrum of these molecules contains several molecular ion peaks with m/z in the range 125-150. All the molecular ions contain the isotope aluminium-27.
	Find the masses of the heaviest and lightest molecular ions giving peaks in this range and the ratios of their abundances. [4]
	Mass of lightest molecular ion peak
	Mass of heaviest molecular ion peak
	Ratio of abundance of heaviest molecular ion to lightest molecular ion

)	(i)	Hydrogen bonding can affect the physical properties of a range of substances.
		Explain what is meant by hydrogen bonding and how it affects physical properties [6 QER]
	•••••	
	•••••	
	•••••	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

TExaminer

	only
14. Limestone is a common rock which consists mainly of calcium carbonate, but often contains	-
dolomite $[CaMg(CO_3)_2]$ as well as insoluble, inert impurities such as sand grains.	1
	1

A group of students planned to investigate the composition of a sample of limestone found in the Peak District National Park. Their teacher told them to start by crushing the rock into a powder and mixing it thoroughly before taking a sample.

Two students attempted to find the percentage by mass of carbonate ions in the sample, and hence find the percentage of dolomite. The methods used by the two students, and their results, are shown below.

Anne's method: Back titration	Jack's method: Gas volume
 Measure precisely a mass of approximately 1.5 g of the powdered limestone and place in a conical flask. Add 25.0 cm³ of hydrochloric acid of concentration 2.00 mol dm⁻³ to the powder and mix thoroughly. Add a few drops of phenolphthalein indicator and titrate using sodium hydroxide solution of concentration 1.00 mol dm⁻³ until a permanent pink colouration is seen. 	 Measure precisely a mass of approximately 0.5g of the powdered limestone and place in a conical flask. Add 25.0 cm³ of hydrochloric acid of concentration 2.00 mol dm⁻³ to the powder and immediately place a bung in the mouth of the flask connected to a gas syringe. Mix thoroughly and measure the volume of gas released.
Anne's results	Jack's results
Mass of limestone used = 1.510 g Volume of aqueous sodium hydroxide used in titration = 20.65 cm^3	Mass of limestone used = 0.41 g Volume of carbon dioxide gas measured at 16 °C and 1 atm pressure = 96 cm ³

(a) Give **two** reasons why the teacher recommended "crushing the rock into a powder and mixing it thoroughly". [2]

(b) Anne initially intended to use sulfuric acid in her method, but her teacher said that hydrochloric acid would be better. Suggest why sulfuric acid would not be appropriate for

[1]

this method.

(c) (i)	State, giving a reason, which of the two methods gives the more accurate value for the percentage by mass of carbonate ions in the sample. [2]
 (ii)	Use the results of the method you have chosen to find the percentage by mass of carbonate ions in the sample. Give your answer to an appropriate number of significant figures. [4]
(iii)	Percentage by mass of carbonate ions =%
()	3.00% by mass of inert impurities and 37.66% of calcium ions. Find the percentage by mass of dolomite. [2]
	Percentage by mass of dolomite =%

_		
Exam onl		One major use of limestone is in the production of calcium oxide, CaO, by heating ca carbonate to approximately 1000K.
		$CaCO_3 \longrightarrow CaO + CO_2$
	[2]	(i) Calculate the atom economy of this method of producing calcium oxide.
	%	Atom economy =
	[2]	(ii) Suggest why this method does not meet the principles of green chemistry.
		(iii) Suggest, giving a reason, an appropriate temperature for converting b carbonate to barium oxide in a similar reaction.
	[2]	
17		

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner

15. A student is provided with four solutions labelled **A**, **B**, **C** and **D**. All four solutions contain ionic compounds made up of familiar cations and anions. All the ions are different.

The student performed flame tests and saw several different flame colours. Two of the flame colours were lilac and golden yellow.

Three of the solutions were colourless and one was pale blue.

To find out the identities of the compounds the student mixed pairs of solutions and his results are given in the table.

	Solution A	Solution B	Solution C
Solution D	white precipitate in a pale blue solution	white solid in a brown solution	pale blue precipitate in a colourless solution
Solution C	white precipitate in a colourless solution, precipitate dissolves when more solution C is added	no visible change	
Solution B	bright yellow precipitate in a colourless solution		

(a) The concentration of all four solutions was 0.10 mol dm^{-3} , however the solutions were labelled with concentrations in g dm⁻³.

Complete the table by finding the relative formula masses of the ionic compounds dissolved in solutions **A-D**. [2]

Solution	Concentration/gdm ⁻³	Relative formula mass (M_r)
Α	33.10	
В	15.00	
С	5.611	
D	15.95	

	Identify the ionic compounds dissolved in solutions A - D . You should explain clearly how you have reached your conclusions. [6 QER]
•••••	
•••••	
•••••	
	tities of compounds
·	
·	
·	
·	
·	
·	
·	
·	

	Examiner
The lilac colour of the flame test is caused by the emission spectrum of an ion.	only
Describe how the emission spectrum of hydrogen atoms can be used to find the first ionisation energy of hydrogen. [2]	t
	10
END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

